
March 1999 The Delphi Magazine 65

Better Calculated Fields
by Rohit Gupta

Calculated fields are potentially
very useful. However, the way

Inprise has implemented them is
not how I wanted to use them: I
needed calculated fields that I
could read and write to when I
wanted, without being restricted
to using an OnCalc event handler or
having to put the dataset into
edit/insert mode. With the stan-
dard Delphi implementation, this
is just not possible. Also, the over-
head of recalculating all the calcu-
lated fields when any field value
changes is too much for me.

One way to solve this would
have been to derive components,
but this would have required
replacements for DataSource,
Table, Query, Fields, etc. I kept
dithering until I came across
Stephen Posey’s article Interposer
Classes, in Issue 33 (May 1998).

Interposer Classes
So what are interposer classes (as
Stephen has dubbed them)? The
technique has been useful in C for
overriding standard Microsoft
library functions with your own
ones by coaxing the linker to use
your routines of the same name
instead of the standard ones.

In Delphi, the technique works
by including a unit containing
replacement classes in the right
place in the uses clause, so that the
linker links your classes in instead
of the Delphi (or third party)
supplied ones.

Fields
The first task is to ensure that the
fields can be modified via edit con-
trols. Having scoured the VCL
source I am unable to find which
bit of code decides that the calcu-
lated fields return CanModify as
False. Therefore, I have taken the
brute force approach of overriding
CanModify, as illustrated in Listing
1. This shows how TStringField
has been overridden. Note that the
new class has the same name as
the original. To ensure that the
compiler knows which is which, it
is essential to prefix the original
one with the unit name it belongs
to, hence DB.TStringField. The
GetCanModify now returns True if
ReadOnly is False.

All the standard field classes
need to be modified or interposed
in this way: look at the unit
CalcFlds on this month’s disk.

The magic here works on every
unit that has CalcFlds in the uses
clause. It is essential that CalcFlds
appears after DB in the uses clause.
All TFields defined in that unit are
created with this new class,
therefore all polymorphic proper-
ties are maintained. That is, if
another standard Delphi unit calls
GetCanModify, the interposed
method is automatically executed.
That’s right: you have dynamically
modified a base class’s method.

Table
We need some method to initialise
the calculated fields on DataChange.
Unfortunately, TDataSource does
not define virtual methods that we
can use. But TTable does.

Listing 2 illustrates how DoAfter
Scroll has been overridden. First,
SetTempState is called. This returns
the current state and sets it to
NewValue, which is an internal state
for such purposes. Next, the inher-
ited DoAfterScroll is called. Finally,
the original state is restored.

There is one other caveat. Some-
where in the depths of VCL, it does
not fire up the datachanged
message/event for calculated

fields. This means that linked edit
controls are not updated with the
new values. The easiest thing to do
is to iterate through all fields and
for each calculated field, fire off the
appropriate event. Note that if you
are using other DataSets (eg TQuery
or TwwTable), you need to override
them instead of TTable.

Remember that the CalcTblsunit
must be in your uses clause after
DBTables. Put the initialisation
code for the calculated fields in the
AfterScroll event.

Databases
I use Btrieve and Titan for all my
projects and I found that I needed
to override ClearCalcFields to pre-
vent calculated fields from being
cleared every time any field
changed in value. This is not
required for dBase using the BDE. I
have no idea what happens with
Paradox tables. It does no harm to
prevent the clearing. For com-
pleteness, the AutoCalcFields flag
is used to control this. If you find
your calculated fields disappear-
ing, set AutoCalcFields to False.

Example
The example supplied on the disk
is a trivial one to show how one can
keep the pre-tax price of a bill item
and the tax in the database. And
you can have the Price_with_tax
field available. The example shows
how to modify any of the three
fields and one of the others is auto-
matically calculated. This would
be a tad impossible with normal
Delphi behaviour.

To run the example, first load
the projcalc.dpr in Delphi. Open
unitcalc.pas and click on the Table
component on the form. Change
the DatabaseName property in the
Object Inspector to the full
pathname of the directory that you
have placed all the files into. Now
set Active to True, compile and run.

To see what standard Delphi
would do, just remove CalcFlds
and CalcTbls from the uses clause
and run again.

unit CalcFlds;
interface
uses
Classes, DB;

type
TStringField =
class(DB.TStringField)
protected
function GetCanModify :
boolean; override;

end;
implementation
function TStringField.GetCanModify:
boolean;

begin
Result := not ReadOnly;

end;
end.

➤ Listing 1

66 The Delphi Magazine Issue 43

Conclusion
Stephen Posey did an excellent job
of discovering interposer classes.
Hopefully, I have added to that
with a practical example where
they are invaluable. Please note
that all my testing has been on
Delphi 3, but there is no reason for

this approach to not work on
Delphi 1, 2 and 4.

As an aside, my requirement was
to have a database table with vari-
able numbers and types of fields
that would be used on different
data entry forms. These forms
would multiply like rabbits over
time and it would be impractical to
have separate tables for each.

➤ Listing 2

unit CalcTbls;
interface
uses Classes, DB, DBTables;
type
TTable = class(DBTables.TTable)
protected
procedure DoAfterScroll; override;
procedure ClearCalcFields(Buffer : PChar); override;

end;
implementation
procedure TTable.DoAfterScroll;
var OldState : TDataSetState;

I : smallint;
begin
OldState := SetTempState (dsNewValue);
try
inherited;

finally
RestoreState (OldState);
for I := 0 to FieldCount-1 do
if Fields [I].FieldKind = fkCalculated then
DataEvent(deFieldChange,longint(Fields [I]));

end;
end;
procedure TTable.ClearCalcFields (Buffer : PChar);
begin
// prevents calculated fields from being wiped if reqd
if AutoCalcFields then inherited; // may need to call inherited on datachange

end;
end.

Another solution would have been
to use normalised tables: that is, a
header table slaved to another
table of variants. This would mean
that each form would typically pull
in 100 to 300 records from the
slave table. The thought was
rather unpalatable.

What I have done, using inter-
poser classes, is to pack a variable
number of fields (of varying types)
into one variable length memo
field. Each form creates calculated
fields of types and quantities
required and the new table class
automatically links them up to the
data and does the packing and
unpacking. If I can find some spare
time, I may describe this in another
article.

Rohit Gupta works for Computer
Fanatics Ltd in New Zealand,
where he deals mostly with
Veterinary Hospital, Hair Dressing
and Beauty Salon systems. At
home he has two children and 10
acres to look after. Email him at
rohit@cfl.co.nz

	Interposer Classes
	Fields
	Table
	Databases
	Example
	Conclusion

